Lie Group Classifications and Stability of Exact Solutions for Multidimensional Landau-Lifshitz Equations
نویسندگان
چکیده
In this paper, based on classical Lie group method, we study multi-dimensional Landau-Lifshitz equation, and get its infinitesimal generator, symmetry group and new solutions. In particular, we build the connection between new exact solutions and old exact solutions. At the same time, we also prove that the initial boundary value condition of the three-dimensional Landau-Lifshitz equation admits a unique solution and discuss the stability of the solution.
منابع مشابه
Exact solutions of the 2D Ginzburg-Landau equation by the first integral method
The first integral method is an efficient method for obtaining exact solutions of some nonlinear partial differential equations. This method can be applied to non integrable equations as well as to integrable ones. In this paper, the first integral method is used to construct exact solutions of the 2D Ginzburg-Landau equation.
متن کاملOn Landau-lifshitz Equations of No-exchange Energy Models in Ferromagnetics
In this paper, we study Landau-Lifshitz equations of ferromagnetism with a total energy that does not include a so-called exchange energy. Many problems, including existence, stability, regularity and asymptotic behaviors, have been extensively studied for such equations of models with the exchange energy. Problems turn out quite different and challenging for Landau-Lifshitz equations of no-exc...
متن کاملSome new exact traveling wave solutions one dimensional modified complex Ginzburg- Landau equation
In this paper, we obtain exact solutions involving parameters of some nonlinear PDEs in mathmatical physics; namely the one-dimensional modified complex Ginzburg-Landau equation by using the $ (G'/G) $ expansion method, homogeneous balance method, extended F-expansion method. By using homogeneous balance principle and the extended F-expansion, more periodic wave solutions expressed by j...
متن کاملLie symmetry analysis for Kawahara-KdV equations
We introduce a new solution for Kawahara-KdV equations. The Lie group analysis is used to carry out the integration of this equations. The similarity reductions and exact solutions are obtained based on the optimal system method.
متن کاملPolynomial and non-polynomial solutions set for wave equation with using Lie point symmetries
This paper obtains the exact solutions of the wave equation as a second-order partial differential equation (PDE). We are going to calculate polynomial and non-polynomial exact solutions by using Lie point symmetry. We demonstrate the generation of such polynomial through the medium of the group theoretical properties of the equation. A generalized procedure for polynomial solution is pr...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016